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Abstract—Enantiomeric 2-n-hexyl- and 2-n-heptylcyclopentanones (3) and (4) have been synthesized by asymmetric hydrogena-
tion of 2-n-hexylidene and 2-n-heptylidenecyclopentanones (1) and (2) with Ru2Cl4[p-tolyl-binap]2NEt3 complexes. The differences
in odor qualities between enantiomeric pairs of the ketones 3 and 4 have been found to be small, and the same odor threshold
values have been observed between the enantiomeric pairs, although the corresponding �-undeca- and �-dodecalactones (6) and
(7), synthesized by Baeyer–Villiger oxidation of the chiral ketones 3 and 4, showed a fairly large difference in the threshold values
between the enantiomeric pairs. © 2002 Published by Elsevier Science Ltd.

Recently, many kinds of olfactory studies on optically
active aroma chemicals have been reported.1 Some of
these optically active aroma chemicals show very differ-
ent odor properties between the enantiomers and the
diastereomers. For example, it had been revealed that
(+)-methyl epijasmonate, which is a key odorous com-
ponent of the jasmine flower, showed a different odor
and a much lower threshold value than the other three
stereoisomers.2 As related compounds with jasmine
odor, racemic 2-n-hexyl- and 2-n-heptylcyclohexanone
are well-known and used for perfume materials. How-

ever, the optically active forms have not been synthe-
sized yet, and the odor properties of the enantiomers
are unknown.

As for the synthesis of optically active 2-alkylcyclopen-
tanones, Gadkari et al. have reported the synthesis of
(R)-undecylcyclopentanone by an asymmetric Grignard
reaction using (R)-2-amino-n-butanol. The optical
purity of this compound was not described. However,
the Baeyer–Villiger oxidation of (R)-undecylcyclopen-
tanone yielded (R)-5-hexadecanolide in an enantiomeric

Scheme 1.
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excess of 50%.3 In another important study, Takaya et
al. had reported the highly enantioselective hydrogena-
tions of 2- or 4-alkylidene-�-butyrolactone and 2-alkyli-
denecyclopentanone catalyzed by BINAP–Ru(II)
complexes. That is, 2-n-pentylidenecyclopentanone in
CH2Cl2 was hydrogenated at 100 atom to afford (S)-2-
penthylcyclopentanone using a [RuCl{(R)-binap}-
(benzene)]Cl complex (S/C=100) in 94% ee and also
using a Ru(OCOCH3)2{(R)-binap} complex (S/C=100)
in over 98% ee.4 These situations prompted us to
synthesize enantiomeric 2-n-hexyl and 2-n-heptylcy-
clopentanones (3) and (4) to study their odor
properties.

We wish to report here the synthesis and odor proper-
ties of chiral ketones 3 and 4 and the corresponding
�-lactones 6 and 7.5

Synthetic routes to chiral ketones 3 and 4 and the
corresponding �-lactones 6 and 7 are shown in Scheme
1.

The starting materials (E)-2-n-hexylidene- and (E)-2-n-
heptylidenecyclopentanones (1) and (2)6 were obtained
in yields of 76 and 78% by the aldol condensation of
cyclopentanone with the corresponding aldehydes (n-
hexanal and n-heptanal) catalyzed by Ca(OH)2 and
dehydration with oxalic acid.

As for the asymmetric hydrogenation of 1 and 2, we
have been interested in studying the catalytic activity
and the enantioselectivity of the products catalyzed by
Ru2Cl4[p-tolyl-binap]2NEt3 complexes (5).7 As a result,
we successfully obtained the chiral ketones 3 and 4 in
over 95% ee and with a relative high catalytic activity
(S/C=1000) using the catalytic system of the chiral
complexes 5 and MeOH under the mild pressure (30
atm).

A typical procedure is as follows; a degassed mixture of
1 (10 mmol) and the catalyst Ru2Cl4[(S)-p-tolyl-
binap]2NEt3 (S)-5 (0.1 mmol) in methanol (12 ml) was
stirred under hydrogen pressure (70 atm) in an auto-
clave (100 ml) for 12 h, at 25°C. After evaporation of
the solvent, the mixture was distilled to remove the
catalyst. The distillate was purified by silica gel column
chromatography to give (R)-2-n-hexylcyclopentanone
(R)-3 (run 1; 89%, 96% ee). (S)-2-n-Hexylcyclopen-
tanone (S)-3 was also synthesized by using Ru2Cl4[(R)-
p-tolyl-binap]2NEt3 (R)-5 in a similar manner. Some
representative results are shown in Table 1.

The hydrogenation proceeded under mild conditions; a
medium pressure (30–70 atm) and low temperature
(25°C). Enantioselectivity, chemoselectivity and cata-
lytic activity were fairly influenced by the solvent. The
highest catalytic activities were obtained in MeOH. The

Table 1. Asymmetric hydrogenation of 1 and 2 with chiral Ru2Cl4[p-tolyl-binap]2NEt3 complexes

Run ProductSelect. (%)Substrate Conv.aTime (h)Cat. (S/C) Press.Solv. (ml) Temp.
(mmol) (°C) (atm) (%)

% eedc[� ]D
25Config.b

12 100 89 (R)-31 −112.5(S)-5 MeOH 961 (10) 25 70
(c 1.01)(100) (12)

12 100 87 (S)-32 +112.3(R)-5 MeOH 951 (10) 25 70
(100) (12) (c 1.08)

5123243050 –e–eiso-PrOH(S)-52 (10)3 (R)-4
(1000) (12)

50 30 24 42 63 (R)-4 –e –e4 EtOH(S)-52 (10)
(1000) (12)

MeOH 965 2 (10) −101.7(R)-490100123050(S)-5
(1000) (12) (c 1.12)

127025MeOH −103.3 97(S)-52 (10)6 (R)-487100
(100) (c 1.00)(12)

24 557 88(S)-5 (R)-4 −81.4Acetone 772 (10) 25 70
(12)(100) (c 1.01)

2 (10) (S)-58 CH2Cl2 9625 70 24 94 95 (R)-4 −102.5
(100) (12) (c 0.98)

2 (10) (S)-5 −102.4MeOH 969 25 70 8 96 89 (R)-4
(2000) (12) (c 1.20)

502 (10) 88MeOH −93.9(R)-4837224(S)-5 3010
(12)(5000) (c 1.15)

(S)-511 −94.0MeOH 882 (10) 75 30 24 70 82 (R)-4
(10000) (12) (c 1.10)

+102.9(S)-488 9710012702512 MeOH2 (10) (R)-5
(100) (12) (c 1.04)

a A conversion was determined by gas chromatography.
b Configration was assigned based on that of the lactone synthesized by Baeyer–Villiger oxidation of 3 and 4.
c Solvent; MeOH.
d % ee was determined by gas chromatography (Chiraldex G-TA; 0.25 mm I.D.×30 m).
e The optical rotation and % ee were not estimated because of the low conversion and low selectivity.
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Table 2. Odor properties of the chiral ketones 3 and 4

Odor propertiesaCompounds Threshold% ee
(ppb)b

(R)-(−)-3 96 Powerful diffusive sweet fruity, fatty somewhat jasmone-like floral odor with slightly oily minty 70
citrus note
Powerful diffusive warm jasmine-like floral odor with coconut-like fruity and slightly herbaceous95(S)-(+)-3 70
note

(R)-(−)-4 97 Powerful diffusive warm jasmine-like floral odor with somewhat mandalin-like citrus side note and 10
more tenacious than (S)-4
Heavy, coconut-like oily fruity and jasmine-like floral odor with somewhat herbaceous side note(S)-(+)-4 1097

a Odor was evaluated on blotters by three perfumers 30 min after neat samples were taken on blotters.
b Odor threshold concentrations in aqueous solution were determined by a triangular method similar to that reported by Acree.2

Table 3. Optical purity (% ee) and odor properties of the lactones 6 and 7 synthesized by Baeyer–Villiger oxidationa of the
ketones 3 and 4

% eeSubstrate Product % eeb [� ]D
25/° (MeOH) Odor propertiesc [threshold (ppb)]

(R)-6 89(R)-3 +44.9 (c 1.02)96 Fruity, sweet, creamy [100]
(S)-6 8995 −44.8 (c 1.05)(S)-3 Fruity, sweet, milky [30]

97(R)-4 (R)-7 93 +42.6 (c 1.10) Fruity, sweet, apricot [500]
97(S)-4 (S)-7 92 −42.4 (c 1.06) Fruity, sweet [50]

a To the ketone (3 or 4; 1 mmol) in CH2Cl2 (10 ml) was added m-CPBA acid (1.5 mmol) in CH2Cl2 (10 ml) at 0°C, then the mixture was stirred
at rt for 48 h.

b % ee was determined by GC (Chiraldex G-TA; 0.25 mm ID×30 m).
c The odor evaluation was done by the same method as for the ketones 3 and 4.

reaction was completed with S/C=1000 (run 5), though
the conversion was 70% in the case of S/C=10,000 (run
11). Higher chemoselectivity and enantioselectivities
were obtained in MeOH or in CH2Cl2 than in acetone,
in iso-PrOH and in EtOH. The best enantioselectivity
of 97% ee was achieved in MeOH with S/C=100 (run
6).

Table 2 shows odor profiles of the chiral alkylketones 3
and 4 obtained in runs 1, 2, 6 and 12. Odor differences
in these enantiomeric pairs were not so large, and they
were determined to show a fundamentally jasmine-like
floral odor. However, the (R)-(−)-forms {(R)-(−)-3 and
-4} showed a cleaner and more diffusive top-note than
the (S)-(+)-forms {(S)-(+)-3 and -4}.

It is reported that several cyclic compounds show a
large difference in the threshold values between enan-
tiomeric pairs, for example, �-damascone8 shows a 70
times difference in values and nootkatone9 shows a 750
times difference in values. However, in the present
work, the same odor threshold concentrations between
the enantiomeric pairs of 3 and 4 have been observed,
although five-membered simple cyclic alkylketones 3
and 4 are structurally similar to methyl jasmonate.

Regarding the corresponding enantiomeric �-lactones,
the results of Baeyer–Villiger oxidation of the alkylke-
tones 3 and 4 obtained in runs 1, 2, 6 and 12 using
m-chloroperbenzoic (m-CPBA) acid are shown in Table
3. Baeyer–Villiger oxidation is known to proceed with
complete retention of configuration on the asymmetric
carbon.10 However, the optical purities of the products
{(R)- and (S)-6 and 7} were a few % lower than those

of the substrate {(R)- and (S)-3 and -4} under the
present experimental conditions.

�-Lactones are widely found in many different kinds of
fruits and play very important roles in flavors. A com-
parison of odor properties of the enantiomers of �-lac-
tones was reported by Mosandl using the samples
prepared by HPLC separation.11 In the odor evaluation
of the present work, it has been identified that the
(S)-forms have lower threshold values than the corre-
sponding (R)-forms, although the corresponding their
substrates 3 and 4 show the same values between the
enantiomeric pairs (Table 3).
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